Louis Pasteur, a French scientist, found a lasting solution to the wine spoilage problem. By heating wine to temperatures below its boiling point for a specified period, the product did not spoil for as long as there was no re-contamination. His famous heat treatment method became known as pasteurization method after his own name.
Non-homogenized milk has a tendency of forming a layer of cream on top of the milk, which many consumers do not like.
Milk homogenization usually take place during pasteurization. We shall see how this happens when we shall be discussing continuous pasteurization process in this article.
The predetermined temperature usually depends on the heat resistance of pathogenic microorganism that the pasteurization program is targeting to destroy.
When deriving the thermal death time of any microorganism, the temperature must remain constant and holding time varied to kill the specified number of cells.
Thermal death time (D-value) is the duration it takes to kill a certain bacteria at a given temperature.
Video by R. Paul Singh
Low temperature pasteurization is majorly concerned with food safety and aims at killing all pathogenic microorganisms and reducing spoilage types in a food sample. Milk that has undergone low temperature pasteurization is suitable for making cheese because it encourages syneresis.
Low temperature pasteurization can assume various temperature/time combinations such as 63°C/30 minutes or 72°C/15 seconds. Mild heating kills all pathogenic bacteria and reduces the load of spoilage bacteria but preserves most physico-chemical properties of the milk.
On the other hand, high temperature pasteurization aims at killing the vegetative pathogenic and spoilage bacteria as well as denaturing as much serum protein as possible. High temperature pasteurized milk is more suitable for making yogurt because Syneresis will not occur. The serum proteins are denatured hence they will not separate.
High temperature pasteurization involves intense heating and may involve temperature/time combination regimes such as 140°/2 seconds, 85°C/30 minutes, or 90°C/20 minutes. Intense heating aims at destroying serum proteins to avoid syneresis.
The choice of the pasteurization method depends on several factors, which may not be limited to:
The principle of the test is premised on the effect of heat on alkaline phosphatase, a natural enzyme found in raw milk. When heated at pasteurization temperatures, the enzyme is deactivated.
When milk containing the phosphatase enzyme is incubated with p-nitro phenyl di-sodium ortho phosphate, the reagent hydrolyses the substrate and liberates para-nitro phenol, which gives a yellow colour in and alkaline environment.
The stronger the colour, the higher the quantity of the enzyme present in milk. Properly pasteurized milk should, therefore, produce a negative result for peroxidase test. Practice caution when preparing samples since recontamination can also lead to a positive test result.
Alkaline phosphatase may not be very reliable because research has shown that it can be reactivated, especially if the pasteurized milk has high fat content.
Since it is technically impossible to bring the milk to that exact temperature, it is always safe to work with a range of temperatures. To be safe, you can heat the milk to between 72°C to 74°C for 15 to 20 seconds. This will ensure that the milk is heated uniformly to the required temperature.
This method is most suitable in continuous pasteurization systems.
High quality flash pasteurized milk will keep for between 16 and 21 days. For selfish commercial interests, some manufacturers will intentionally reduce the number of days to push the products out of the shelves.
Video illustration of how the PHE works
Video by Sondex A/S
This method is best for batch pasteurization where the milk is held in a jacketed vat for effective pasteurization. There are many designs of batch pasteurizers in the market that are suitable for both domestic and commercial use.
Let us look at some of the best batch pasteurizers for home use. We'll also review an ice cream mix / cream pasteurizer that is capable for commercial use.
It involves heating milk or cream to between 135°C to 150°C for one to two seconds, then chilling it immediately and aseptically packaging it in a hermetic (air-tight) container for storage.
Despite the risk of Millard browning, UHT pasteurization remains the most popular milk preservation method for safe and stable milk.
These temperature-time combinations have been proven to be sufficient for the destruction of pathogens and the enzyme phosphatase. A negative test result for the alkaline phosphatase test confirms the efficacy of pasteurization.
If the milk is to be used for making yogurt, there is no need to chill it. It will only require regenerative cooling to about 45°C, which is the suitable temperature for yogurt bacteria.
The aim of this experiment is to find out the curdling rates of these two samples of milk when rennet and/or yoghurt culture is added.
Upon cutting the curd, sample A formed a thick curd while sample B remained practically curd-less.
What is the difference between pasteurization and homogenization?
Many people tend to confuse pasteurized milk with homogenized milk. Let's first look at these two processes before going deeper into the purpose and process of pasteurization.What is milk homogenization?
Homogenization is a mechanical process that is applied to milk to break down fat globules in milk so that the butter fat does not separate from the aqueous phase.Non-homogenized milk has a tendency of forming a layer of cream on top of the milk, which many consumers do not like.
Milk homogenization usually take place during pasteurization. We shall see how this happens when we shall be discussing continuous pasteurization process in this article.
What is milk pasteurization?
We can define milk pasteurization as the process of heating milk to a predetermined temperature for a specific duration to kill specific pathogens and reduce the load of spoilage microorganisms without re-contamination during the entire process.The predetermined temperature usually depends on the heat resistance of pathogenic microorganism that the pasteurization program is targeting to destroy.
Proper pasteurization is necessary for the following reasons:
- There is a public health concern since the product is meant for public consumption. Pasteurization kills all the pathogenic bacteria that may cause infections to consumers.
- There is need to ensure that the product can keep for longer periods without expensive storage equipment. Pasteurization will eliminate spoilage bacteria and enzymes and extend the shelf life of the product.
When deriving the thermal death time of any microorganism, the temperature must remain constant and holding time varied to kill the specified number of cells.
Thermal death time (D-value) is the duration it takes to kill a certain bacteria at a given temperature.
Difference between D-value, Z-value, and F-value?
- The decimal reduction time, D-value, is the amount of time under specified conditions to reduce microbial population by one decimal. This time varies and is dependent on the temperature and the target microorganism. One decimal reduction (1D) is equivalent to a population drop by one log cycle or 90% reduction. For instance, let's say we can reduce the population of microbe X to 10% by exposing it to 121°C for 4 seconds. We Denote the D-value of microbe X as D121°C = 4 seconds. For spore formers like Clostridium botulinum, the treatment should achieve 12 log cycle reduction in original bacterial population.
- Z-value is the measure of change in the rate of death due to change in temperature. It is the change in temperature required to change the decimal death time by one log cycle or one decimal (1D). In other words, Z-value is the measure of bacterial sensitivity to heat treatment. It is the change in temperature that will reduce the D-value by a factor of 10. You can obtain a Z-value by plotting two D-vales against temperature.
- F-value is the duration it will take to kill a known bacterial population. It is usually set at 12 log cycles (12D) to kill the most resistant mesophilic spores in a food sample. Different microorganisms have different D-values. However, these D-values follow a negative slope when plotted on a graph.
Milk pasteurization programs
Broadly, pasteurization can be categorized as either low or high temperature pasteurization methods. Both of these can either be batch or continuous processes.Low temperature pasteurization is majorly concerned with food safety and aims at killing all pathogenic microorganisms and reducing spoilage types in a food sample. Milk that has undergone low temperature pasteurization is suitable for making cheese because it encourages syneresis.
Low temperature pasteurization can assume various temperature/time combinations such as 63°C/30 minutes or 72°C/15 seconds. Mild heating kills all pathogenic bacteria and reduces the load of spoilage bacteria but preserves most physico-chemical properties of the milk.
On the other hand, high temperature pasteurization aims at killing the vegetative pathogenic and spoilage bacteria as well as denaturing as much serum protein as possible. High temperature pasteurized milk is more suitable for making yogurt because Syneresis will not occur. The serum proteins are denatured hence they will not separate.
High temperature pasteurization involves intense heating and may involve temperature/time combination regimes such as 140°/2 seconds, 85°C/30 minutes, or 90°C/20 minutes. Intense heating aims at destroying serum proteins to avoid syneresis.
The choice of the pasteurization method depends on several factors, which may not be limited to:
- Intended purpose of the pasteurized milk,
- Access to sophisticated equipment,
- Volume of milk to be pasteurized,
- Target microorganism, etc
Different types of thermal processing methods
- Thermization: Heat the milk to between 57°C to 68°C and hold for 15 minutes. Thermization targets pathogenic bacteria while leaving the good bacteria in the product. The low temperatures do not alter the structure and taste of the milk.
- Batch pasteurization: Also known as low temperature long time (LTLT) pasteurization. Heat the milk to 63°C for 30 minutes. The extendend holding time causes alteration in the milk protein structure and taste.
- Flash pasteurization: also known as high temperature short time (HTST) pasteurization. Heat the milk to between 72°C to 74°C for 15 to 20 seconds. Targets resistant pathogenic bacterial spores (Clostridium botulinum spores).
- Ultra-high temperature (UHT) pasteurization: Heat the milk to between 135°C to 140°C for 2 to 4 seconds. The extreme heat targets Coxiella burnetii, which causes Q-fever. The heat kills all the vegetative forms of bacteria and the milk can survive for 9 months.
- Canned sterilization: This is a wet treatment of canned milk products in an autoclave/specialized treatment chamber. Heat to between 115°C to 121°C for 10 to 20 minutes.
How to test for the effectiveness of milk pasteurization
High temperature pasteurization denatures peroxidase enzyme. The enzyme is more resistant to heat treatment than all pathogenic microorganisms found in milk. If the heat treatment is sufficient to denature this enzyme, it is a confirmation that all the pathogenic microorganisms have been killed been killed in the process.The principle of the test is premised on the effect of heat on alkaline phosphatase, a natural enzyme found in raw milk. When heated at pasteurization temperatures, the enzyme is deactivated.
When milk containing the phosphatase enzyme is incubated with p-nitro phenyl di-sodium ortho phosphate, the reagent hydrolyses the substrate and liberates para-nitro phenol, which gives a yellow colour in and alkaline environment.
The stronger the colour, the higher the quantity of the enzyme present in milk. Properly pasteurized milk should, therefore, produce a negative result for peroxidase test. Practice caution when preparing samples since recontamination can also lead to a positive test result.
Alkaline phosphatase may not be very reliable because research has shown that it can be reactivated, especially if the pasteurized milk has high fat content.
Different Pasteurization Regimes
1. High Temperature Short Time (HTST) pasteurization
This type of pasteurization is also known as flash pasteurization. Flash pasteurization involves heating milk to 71.7°C for 15 seconds to kill Coxiella burnetii, which has been identified to be the most heat-resistant pathogen of public health concern in raw milk.Since it is technically impossible to bring the milk to that exact temperature, it is always safe to work with a range of temperatures. To be safe, you can heat the milk to between 72°C to 74°C for 15 to 20 seconds. This will ensure that the milk is heated uniformly to the required temperature.
This method is most suitable in continuous pasteurization systems.
High quality flash pasteurized milk will keep for between 16 and 21 days. For selfish commercial interests, some manufacturers will intentionally reduce the number of days to push the products out of the shelves.
How HTST pasteurization works
A standard milk pasteurization system consists of the following parts:- Balance tank: maintains a constant head for the incoming milk
- Milk feed pump: creates suitable pressure that is necessary for efficient flow
- Flow control system: ensures that sufficient amount of fluid is in the conduits at any given time
- Filters and clarifiers: remove dirt from the products
- Homogenizer: divides fat globules into micro globules to avoid fat separation in standing milk
- PHE with regeneration, heating, holding and cooling sections: facilitates efficient pasteurization
- Flow diversion valves: Ensures that all the conditions for pasteurization have been met before the milk passes through.
- Instrumentation and control equipment: Increase system efficiency and reliability
- Peripheral sources of utilities such as steam, compressed air, and water: Provides the necessary utilities for heating, cooling, and pressurized environments
- Conduits/piping system: Facilitate flow of milk and utilities from one point to the next without possibility of contamination
Here's how milk moves through the PHE for an effective pasteurization
- Chilled milk from the bulk milk tank at 4°C moves into the balance tank from where it is pumped into the regeneration section of the PHE.
- At the regenerative heating section of the PHE, chilled milk receives heat from the already pasteurized milk leaving the system. Heat exchange occurs across the PHE plates in a counter current motion of the two fluids of different temperatures (the video below illustrates this motion). The regenerative heating raises the temperature of milk to about 40°C to facilitate easy standardization. Heating then continues to 60°C to facilitate easy homogenization of the fat globules.
- After clarification, standardization, and homogenization, milk passes into the heating section where milk exchanges heat with steam across the PHE plates. The steam heats the milk to over 72°C, which is the perfect HTST pasteurization condition.
- Once the milk has attained the pasteurization temperatures, it moves into the holding tubes. The length of these tubes has been calibrated with the flow rate to ensure that the milk stays at that temperature for at least 16 seconds. This time is sufficient to destroy the target pathogen according to the D-values (outlined in the first video above.)
- If the milk fails to attain the required temperatures, the flow diversion valve diverts its flow back to the heating section to ensure that the temperatures are sufficient to kill all the target pathogens and their spores.
- Once the milk is fully pasteurized, it moves back to the regenerative heating section to raise the temperatures of the incoming chilled milk. In the process, the temperatures of the outbound pasteurized milk drop to about 32°C.
- The pasteurized milk then moves to the cooling section of the pasteurizer where chilled water (or PHE coolant) further lowers its temperatures to 4°C.
Advantages of regenerative heating
- Utilization of the incoming chilled milk to cool the outgoing hot pasteurized milk increases the efficiency of the PHE.
- A smaller amount of heat energy is required to heat the milk to pasteurization temperatures since the heating does not start from 4°C of the chilled milk.
- Reduces the amount of time required to pasteurize milk.
Video illustration of how the PHE works
2. Low Temperature Long Time (LTLT) pasteurization
Here, the temperatures used for pasteurization are reduced to 63°C and held for 30 minutes. The prolonged holding period alters the structure of the milk proteins making it better suited for making cheese.This method is best for batch pasteurization where the milk is held in a jacketed vat for effective pasteurization. There are many designs of batch pasteurizers in the market that are suitable for both domestic and commercial use.
Let us look at some of the best batch pasteurizers for home use. We'll also review an ice cream mix / cream pasteurizer that is capable for commercial use.
3. Ultra High Temperature (UHT) Pasteurization
This is a completely closed pasteurization method. The product is never exposed even for a fraction of a second during the entire process.It involves heating milk or cream to between 135°C to 150°C for one to two seconds, then chilling it immediately and aseptically packaging it in a hermetic (air-tight) container for storage.
Despite the risk of Millard browning, UHT pasteurization remains the most popular milk preservation method for safe and stable milk.
Disadvantages of high temperature pasteurization
- There is a possibility of alteration of milk proteins. This can affect the properties of such milk when used to make other food products.
- High temperatures inactivate the enzymes that protect the product increasing the risk of spoilage.
- Elevated temperatures cause Maillard reaction, which discolors the product making it undesirable to consumers.
- High temperatures alter the protein structure and imparts a cooked flavor to the milk.
Application of high temperature pasteurization
Pasteurizing fluid milk
You can heat the milk to 63° C for not less than 30 minutes (low temperature long time pasteurization). Alternatively, heat the milk to 72° C for not less than 16 sec (high temperature short time pasteurization) or equivalent.These temperature-time combinations have been proven to be sufficient for the destruction of pathogens and the enzyme phosphatase. A negative test result for the alkaline phosphatase test confirms the efficacy of pasteurization.
Frozen dairy dessert mix pasteurization
Very many frozen dairy products exist in the market. When pasteurizing ice cream or ice milk, heat the product to at least 69° C for not less than 30 min or 80° C for not less than 25 sec. Any other time-temperature combinations must be approved (e.g. 83° C/16 sec).Pasteurization of enriched milk products
Milk based products with 10% butterfat or higher, or added sugar (e.g. cream, chocolate milk, etc.) should be heated to 66° C/30 min or 75° C/16 sec for effective pasteurization.Objectives of milk pasteurization
- The chief objective of milk pasteurization is to destroy pathogenic bacteria that could have a public health concern. By destroying these microorganisms, the product becomes safe for public consumption.
- Secondly, pasteurization eliminates destructive bacteria and enzymes that could cause spoilage of the product. This leads to a prolonged shelf life of the milk.
- Pasteurized milk is commercially sterile, which means that they are not entirely rid of bacteria. One should compound their preservation with another method (usually refrigeration).
Steps in pasteurization
Before you begin pasteurization, chances are high that you will be bulking milk to attain an economically viable volume. Milk being a highly perishable product, it requires extreme care to avoid incurring losses. For this reason, it is necessary to chill the milk to avoid spoilage.a) Milk chilling
- Chilling is not a pasteurization process, but it is a necessary step when dealing with large volumes of milk. Milk leaves the cow's udder at temperatures above the ambient, which encourages rapid bacterial multiplication that speeds up spoilage.
- However, reducing the temperatures to between 2 - 5°C arrests bacterial growth and metabolism. This provides a head start at keeping the quality before proper pasteurization commences.
- Chilling may affect the quality of the product negatively if it is kept for long. Psychrotrophic bacteria will cause proteolysis of protein, which leads to bitter flavor attributed to the released polypeptides.
- Prolonged chilling introduces alterations to the structure of the casein micelles and increases the coagulation time. This leads to formation of less firm curd and consequently low-quality cheese.
Effects of chilling on milk
Impeding rennet/acid coagulation:
- Lowering the temperatures to 2°C causes the milk not to coagulate even after rennet/acid treatment. This phenomenon has been utilized in continuous cheese making process in which the temperatures are raised after addition of acid/rennet. Coagulation begins when the temperatures reach 15°C to 30°C.
No coagulation of milk at isoelectric point:
- Even after adjusting the pH of casein to isoelectric point (IP), the milk will not coagulate if its temperature ranges between 2°C and 5°C.
- Low temperatures encourage the formation of many diffusible inorganic salts that distorts the micellar structure of casein leading to formation of more non-micellar (soluble) casein.
- Consequently, one you have to lower the pH of the medium further to achieve complete coagulation. However, acid coagulation leads to formation of a less rubbery coagulum.
Chilling increases viscosity of milk:
- Viscosity of milk largely depends on its colloidal components, of which proteins forms the bulky part. Chilling changes the structure of milk proteins leading to an increase in their bulk hence the increase in milk viscosity at chilled temperatures.
Chilling decreases in cheese curd firmness:
- Milk chilling affects the ratio of calciumhosphate hence their interaction in the colloid solution. A drop in this ratio leads to an increase in the duration it takes for the milk to coagulate. To counter this problem, add calcium chloride to cheese milk before cold aging starts.
Increases hydrolytic rancidity in milk:
- Chilling exposes the casein micelle and release the lipases into the medium. As the temperatures rise gently or when the medium is gently agitated, the lipases get active and attack the fat globules and release the fatty acids leading to rancidity.
Increases foaming in milk:
- Chilled milk foams easily due to the increased activity of ß-lactoglobulin, which is a surfactant. Milk proteins coalesce at the surfaces/lamellae of the protein, which also traps air leading to formation of air bubbles.
Chilling leads to an increased clustering of fat:
- Chilling milk encourages change formation in the surface of fat globules, which encourages the globules to stick together. The clustering of fat globules leads to an increased creaming rate in cold milk.
b) Pre-heating (regeneration) and standardization stage
- After bulking, the chilled milk is heated to about 40°C to facilitate easy separation of butter fat during standardization.
- The system uses regenerative heating, i.e., it uses the heat of the already pasteurized milk to heat up the incoming chilled milk. The chilled milk, in a counter current flow, cools down the pasteurized milk.
- The purpose of standardization is to obtain a product with uniform content of butter fat. Different products can be obtained from this process e.g. skimmed milk, standardized milk, low fat milk, high fat milk, etc.
- After determining the type of product you are making, you can use a computer program or any standardization method to determine the amount of cream to separate. This will leave you with the desired amount of butterfat to standardize the milk.
c) Clarification stage
- Clarification is essential for removing all foreign matter from the product. Large solid particles are removed by straining the milk through tubular metallic filters. A centrifugal clarifier (not the one used for standardization) is used to remove all soil and sediments from milk.
- The filters, usually fitted in parallel twins permits continuous processing as one can be cleaned while the other is running. Clean the filters regularly (between 2 to 10 operational hours depending on the level dirt) to avoid growth of bacteria.
d) Standardization stage
- It is important to standardize milk fat to ensure that you end up with a product of consistent quality in the market. Different consumers prefer different products.
- There are customers who will consume skim milk only while there are those who will take low fat milk. There are those who will take standardized milk while there are those who prefer high fat milk.
- Standardization is necessary to ensure that all the customers are catered for. Again, it is during the process of standardization that you get to separate the butterfat that is used for making cream and other fat-based products such as butter and ghee.
- Here is an in-depth overview of milk standardization.
e) Homogenization stage
- Homogenization is a physical process of breaking down the milk fat globules into tiny droplets to discourage cream separation. Tiny droplets of fat do not rise in a milk column since reducing their sizes also increases their density in the milk.
- A milk homogenizer working at between 100 to 170 bars splits all the fat globules into very tiny droplets that increases the level of integration of the fat in the milk. As a result, the milk fat remains uniformly distributed in the milk.
f) Heating section
- Utilizes heat from steam to raise the temperatures of the milk from about 60°C to the required 72°C that is effective to kill the Clostridium botulinum spores. The steam exchanges heat with the milk across the PHE plates in a counter current motion.
- At the end if this section, there is a temperature sensor, which controls the flow diversion valve. Any milk that does not attain the required temperature is diverted back to the heating section until it attains the required temperatures.
g) Holding section
- After heating, milk flows into the holding tubes whose lengths have been calibrated with the milk flow rate to ensure that milk takes at least 16 seconds in the tubes. All the milk must maintain the required pasteurization temperatures at the end of the tubes.
- In case of a breach, a sensor will trigger the flow diversion valve to take the milk back to the heating section to bring the milk to the required temperature.
- Once the milk has attained the required temperatures at the end of the holding tubes, milk flows back to the regeneration section to heat the incoming chilled milk while in itself being cooled down to about 30°C.
h) Cooling/chilling section
- After regenerative cooling of pasteurized milk, it moves to the cooling section of the PHE where chilled water/PHE coolant lowers the temperature of pasteurized milk to 4°C. The chilled milk is then pumped to the packaging machines for aseptic packaging and subsequent storage in the cold room.
If the milk is to be used for making yogurt, there is no need to chill it. It will only require regenerative cooling to about 45°C, which is the suitable temperature for yogurt bacteria.
Comparing Curdling Between Low and High Temperature Pasteurized Milk
The milk samples are subjected to two different pasteurization regimes. One sample is heated to 85°C and then held for 15 minutes, after which it is cooled to 45°C. The other sample is heated to 63°C where it is held for 30 minutes, after which it is cooled to 45°C.The aim of this experiment is to find out the curdling rates of these two samples of milk when rennet and/or yoghurt culture is added.
The experiment
- Sample A was subjected to low temperature long time (LTLT) pasteurization while sample B was subjected to high temperature short time (HTST) pasteurization.
- Each of the batches were sampled into separate beakers, their pH measured and recorded.
- Three (3) mls of yoghurt culture was added into each beaker followed by 3 mls of activated rennet.
- The pH was then determined after every five-minute interval for the next 10 minutes.
The Results
Sample | Initial pH | pH on addition of rennet | pH after 5 minutes | pH after 10 minutes |
A | 6.6 | 6.56 | 6.44 | 6.32 |
B | 6.49 |
Interpretation of results
- From the results obtained in this experiment, it is safe to conclude that milk to be used for cheese-making should be subjected to low temperature long time (LTLT) pasteurization.
- This will encourage faster curd formation because low heat does not denature the whey proteins, which are instrumental in the bond formation of the curd. Also, the undenatured whey proteins promote whey separation.
- On the contrary, milk intended for making yoghurt should be subjected to high temperature pasteurization (90°C for up to 30 minutes) to completely denature the whey proteins. This will ensure that the yoghurt does not undergo syneresis.